If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50t^2+15t+1=0
a = 50; b = 15; c = +1;
Δ = b2-4ac
Δ = 152-4·50·1
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5}{2*50}=\frac{-20}{100} =-1/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5}{2*50}=\frac{-10}{100} =-1/10 $
| 2x+9+3x-1=29 | | 8x-16=-64 | | 4.5=1.4-0.6y | | -37.8=-7r | | a/6=3a=2 | | 2160=36(p+20) | | -29=3x+4 | | 7a-9=19 | | +2(x+4)=4x-2 | | 2160=20(p+20) | | -5x+6=+1 | | 2(-3z+4)-12=-6(1z-1)-8 | | 12z+80=560 | | -7g-39=60 | | 6=3t-6 | | 7g-39=60 | | 7g+39=60 | | (3a+7)(2a-5)=0 | | 2^x=1,000,000 | | 2x-3x+7x=54 | | 835=5x+16 | | 6+3b=5b | | -29.4=-4.9r | | 2y+3=4y−31 | | 75–3.5y–4y=4y+6y= | | 6x+12-21x=33-6x | | n/3-2=15 | | 4y−31=2y+3 | | 4=-8+5(u-4) | | 2,211=3p+20 | | 105x=2500+10x+0.2x^2 | | -2=15-x |